
 1

Model-Based Engineering Design Pilots at JPL

Mark Kordon, Steve Wall, Henry Stone, William Blume, Joseph Skipper, Mitch Ingham,
Joe Neelon, James Chase, Ron Baalke, David Hanks, Jose Salcedo, Benjamin Solish, Mona Postma, Richard Machuzak

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

818-393-0476
Stephen.D.Wall@jpl.nasa.gov, Mark.A.Kordon@jpl.nasa.gov

Abstract—This paper discusses two recent formulation
phase Model-Based Engineering Design pilot projects at the
Jet Propulsion Laboratory. It describes how model-based
functional and state analyses were synthesized and
integrated with system performance simulation and mission
planning then piloted in the formulation phase of two deep
space missions.

TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
2.0 FUNCTIONAL ANALYSIS.................................... 2
3.0 STATE ANALYSIS .. 4
4.0 SYNTHESIS OF FUNCTIONAL AND STATE

ANALYSES.. 5
4.1 SCHEMA INTEGRATION 5
4.2 INFUSION INTO THE CORE TOOL 6
5.0 MISSION PLANNING .. 6
6.0 S/C PERFORMANCE SIMULATION 7
6.1 INTEGRATED SPACECRAFT ANALYSIS 7
6.2 INTER-APPLICATION COMMUNICATION 9
7.0 NUSTAR PILOT.. 10
7.1 NUSTAR MISSION DESCRIPTION 10
7.2 NUSTAR REQUIREMENTS AND DESIGN 11
7.3 NUSTAR MISSION PLANNING 12
7.4 NUSTAR SIMULATION RESULTS 13
8.0 JUNO PILOT... 13
8.1 JUNO MISSION DESCRIPTION 14
8.2 JUNO REQUIREMENTS AND DESIGN 15
8.2.1 JUNO STATE ANALYSIS................................ 15
8.3 JUNO MISSION PLANNING 16
8.4 JUNO SIMULATION RESULTS 17
9.0 CONCLUSIONS ... 18
ACKNOWLEDGEMENTS... 18
REFERENCES... 18
BIOGRAPHY .. 19

 1.0 INTRODUCTION
At the Jet Propulsion Laboratory (JPL) the life-cycle of a
deep space mission normally goes through six phases, each
culminating with a review by project management and its
funding agencies [1]:

1 1-4244-0525-4/07/$20.00 ©2007 IEEE.
2 IEEEAC paper #1678, Version 11, Updated December 11, 2006

• Pre-Phase A: Advanced Studies
• Phase A: Mission & System Definition
• Phase B: Preliminary Design
• Phase C: Design & Build
• Phase D: Assembly Test & Launch Ops
• Phase E: Operations

Model-based engineering design (MBED) enhances the
description of a system beyond traditional language,
utilizing both descriptive and simulation models to improve
the understanding and verification of the system.

In fiscal year 2004 (FY04), JPL’s Research and Technology
Development (R&TD) program undertook a multi-year
initiative to incrementally build an end-to-end, concept to
operations, model-based approach for JPL space mission
system design. In FY06, the initiative focused on the
spacecraft (S/C) formulation in Phase A. Since many of the
activities in this phase center on system engineering, the
initiative focused on developing its model-based system
engineering (MBSE) capabilities.

Systems engineering has been described as an
interdisciplinary engineering management process that
evolves and verifies an integrated, life-cycle balanced set of
solutions that satisfies customer needs [2]. Rather than
focus on one particular aspect of the system, system
engineers address broad system-wide issues such as cost,
schedule, risk, performance, training, support, test,
manufacturing and operations throughout a project’s
lifecycle.

Early in a project, system engineering tasks focus on
defining and documenting customer needs, desired
functionality, and requirements. Later as the system is being
developed the emphasis shifts to design synthesis and
system validation. At JPL these activities span many
domains including project system engineering, flight system
engineering, payload system engineering, software system
engineering, and mission operations system engineering, in
an attempt to meld each technical discipline into a unified
whole.

The lab’s current system engineering methodology was
adapted from the document-based paradigm established in
the 1940’s and 50’s by the Manhattan project and early

 2

space program engineers. While this approach has been
responsible for many successes, early space projects were
relatively simple when compared to recent missions. It is
now widely recognized that the document-based approach
does not scale well. There are a number of well-documented
deficiencies when applying these techniques to larger, more
complex systems, most notably in the areas of requirements
traceability and verification and validation (V&V) activities.

Recent missions have required extremely precise
measurements from highly sensitive instruments in
increasingly remote and unfamiliar environments. This
impacts the entire system, requiring complicated and/or
physically large mechanisms with many interconnected and
compounded processes. With many more
interdependencies, the chances of a requirement or design
change having an unintended and possibly catastrophic
effect on the project increases. Being able to quickly
recognize and react to unanticipated effects and/or budget
issues is critical in JPL’s schedule and cost constrained
environment.

MBSE is an alternative to the current document- based
approach. MBSE analysis and design methods utilize
structured, graphical, implementation-independent
notational systems for producing unambiguous
documentation of system requirements and design. As with
other notational systems these model-based languages have
syntax (structure) and semantics (meaning). What makes
them unique is that they can produce artifacts that are both
machine-readable and human-readable. This means that
consistency, completeness and integrity of requirements and
design can be checked with automated system audits. It also
means that one can select and quantitatively transform
system engineering information, enabling other kinds of
analyses such as simulation-based risk and performance
assessments.

By adopting a model-based systems engineering approach,
models become the project knowledge, capturing all
rationale and decisions. Requirements and designs are
stored and exchanged using a standardized information
model. The expressive power of models and the rigor of a
model-capture and analysis process offer great benefits.
Much like the advance that algebraic notations offered
physics; the model-based approach provides clear
definitions of behavior, capability, and design for system
engineering activities.

Computer-based simulation models, on the other hand, are
commonplace in academia and industry. Supported by
increasingly powerful commodity computer hardware and
modern computational methods, simulations are able to
provide better forecasts faster than ever before. For this
reason they are now indispensable tools in many business,
engineering and science disciplines. Aerospace companies,
for example, use simulations to analyze and tune vehicle
performance, while automobile manufacturers use them as a

means to upgrade manufacturing processes and simulate
crash tests to improve vehicle safety.

Simulations are widely accepted and used in investment
analysis, decision (risk) analysis, systems analysis, product
design, and training. In engineering applications,
simulations enable early detection of subtle design errors
allowing engineers to reliably create complex systems that
are well beyond the capability of traditional approaches. At
JPL they are often important tools in minimizing risk and
maximizing flight readiness.

Integrating the model-based systems engineering process
with the simulation and mission planning processes is an
important aspect of model-based engineering design. This
type of integration is different than the time-based
integration needed in simulation models. In process
integration, processes (or applications) are run to
completion and their data is passed to other processes. Thus,
the focus of process integration is inter-application
communication and execution rather than event handling.

The paper begins with a brief overview of the traditional
functional analysis approach and a newer state analysis
approach to systems engineering. It then goes on to discuss
the synthesis of these two approaches, and their integration
with performance simulations and mission planning. The
paper concludes by presenting the results of two JPL
formulation phase pilot efforts.

2.0 FUNCTIONAL ANALYSIS
Engineering a large, complex system necessarily involves a
decomposition of the system into smaller units. In the case
of space missions, it is common and reasonable to impose a
hierarchical decomposition, working from larger elements at
the top of the hierarchy (Level 1) to smaller elements at the
bottom, until the system is sufficiently described to begin
implementation (typically Level 5).

The typical system engineering process for JPL missions is
functional analysis, also known as functional
decomposition. An overview of a generic “Level-N”
functional decomposition process is shown in Figure 1.

The process begins by defining the problem to be solved.
This step involves developing a Concept of Operations,
identifying stakeholder needs, and documenting the
boundary between the system being designed and external
elements. Next a functional architecture of the system is
developed. This includes both a definition of the Concept of
Operations in the form of an ordered model of the functions
(scenario functions) performed by the system and the
intrinsic functionality, with information flow, at Level-N
that is required to execute the scenario.

 3

Integrate
Systems
& Execute
V&V Plans

AND ANDI

7

AND AND

4 *7*

AND ANDI

6

9

5

AND AND

2

3

8

Define
Design
Problem

Develop
Functional
Architecture

Develop
Physical
Architecture

Develop
Requirements

Develop
V&V Plan
& Matrix

Produce
Draft
Document(s)

Produce
Baseline
Document(s)

Manage
Project
Engineering
Process

• Develop Concept of Operations
• Identify Stakeholder & Their Needs
• Identify Level-N System Boundaries

• Develop Functional Models
– Scenarios
– Intrinsic Capabilities

• Develop Inter Function Interfaces
• Define States and Modes

• Develop Level N+1 Component Models
• Allocate Functions to Level N+1 Components
• Develop Inter Component Interfaces

• Manage Issues
• Manage Risks
• Manage Baseline Configuration
• Identify & Perform Analyses & Trade Studies
• Manage Consistency of PEM

• Write Level N Requirements
• Document Rationale
• Trace Level N Requirements to Parent Requirements
• Allocate Level N Requirements to Level N+1 Systems (Components)

• Develop V&V Plan
• Develop V&V Matrix

II

Enter at
Level N

II

1

Set Level N = Level N+1

• Integrate System
• Execute V&V Plan

Figure 1 Typical System Engineering Process

Figure 2 Conceptual Layout of Requirements, Functions and Physical Components

After the functions of the system are defined, the system’s
physical architecture is defined (with definitions for the
product breakdown structure) and system requirements are
developed. As functions, physical components and
requirements are created; connections between them are
created as well so that the relationships linking functions,
physical components and the rationale for requirements are
also stored.

This iterative process is followed at each level, with design
products (requirements, functional models, etc.) at the
higher level flowing down to provide a starting point for the
next lower level. Ultimately a hierarchy of functions,
physical components (product breakdown structure) and
requirements are created along with the linkages between

the functional, physical and requirement hierarchies. This is
shown graphically in Figure 2.

This process is currently performed at JPL using a
document-based methodology. The system’s functional
architecture, physical architecture and requirements are
described with documents in natural language. In this
approach, while connections within and between hierarchies
are defined, they are difficult to verify thoroughly.

The model-based methodology utilizes a model-based
language, having a defined syntax (structure) and semantics
(meaning), in a computer-aided model-based systems
engineering tool. The advantage is that connections within
and between hierarchies can be created and machine
audited. For example, the user can create a system

 4

engineering tool script to verify that all requirements have
been addressed.

In addition, metadata can be stored with each function,
requirement and/or physical component. The advantage
here is that design data, for example, can be stored with the
physical components.

Furthermore, the computer-aided model-based systems
engineering tool can produce artifacts that are both
machine-readable and human-readable. This means that
documents, such as review gate products, can be produced
from the repository of system engineering information and
that data can be extracted to execute simulation-based
verifications. Thus the computer-aided model-based
systems engineering tool becomes the central, single
repository of system engineering knowledge on the project.
While these principles apply to virtually any computer-
aided model-based systems engineering tool, the MBED
pilot projects used CORE from Vitech [3].

 3.0 STATE ANALYSIS
While functional analysis provides a good static view of the
system, its ability to represent dynamic behavior is severely
lacking. Understanding dynamic interactions typically
encountered in the design of complex systems, such as
autonomous unmanned air vehicles, robotic vehicles and
spacecraft, and automated ground infrastructure, is crucial.

In this formulation phase model-based engineering design
process, the dynamic aspects of requirements analysis and
design synthesis are addressed with mission planning and
performance simulation (described in the following
sections). To address dynamic aspects of functional
analysis, behavioral modeling is used.

Behavioral modeling identifies the important state variables
in the system, capturing the causal effects among these state
variables (under both nominal and off-nominal situations),
and describing how state variables change under the
influence of other state variables and commands issued by a
control system.

Behavioral models of this type are invaluable, in that they
can be used for multiple purposes, including:

• Informing the design of flight and ground software (e.g.,

estimation and control algorithms);
• Using them directly in model-based estimation & control

software (e.g., Kalman filters);
• Informing the design of fault protection mechanisms

(models of nominal and off-nominal behavior can feed
into fault tree and FMECA analyses, risk analyses, and
fault monitor/response design.

• Feeding directly into simulations, as described in Section
6.0, below; and

• Using them for planning and scheduling purposes

(including automated planning and scheduling, either on
the ground or onboard the spacecraft).

A novel model-based systems engineering methodology,
called State Analysis [4], has been developed to complement
the functional decomposition approach and better address
the complexity challenge. It provides a methodical and
rigorous approach for:

• Modeling behavior in terms of system state variables and

the relationships between them (state-based behavioral
modeling);

• Capturing mission objectives in detailed scenarios
motivated by operator intent (goal-directed operations
engineering); and

• Describing the methods by which objectives will be
achieved (state-based software engineering).

The work described in this paper focuses solely on the state-
based behavioral modeling aspect of state analysis, which
provides an iterative process for discovering state variables
of the system under control and for incrementally
constructing the model. The steps in this process are as
follows:

1. Identify needs – define the high-level objectives for

controlling the system.
2. Identify state variables that capture what needs to be

controlled in order to meet the objectives, and define
their representation.

3. Define state models for the identified state variables –
these may uncover additional state variables that affect
the identified state variables.

4. Identify measurements needed to estimate the state
variables, and define their representation.

5. Define measurement models for the identified
measurements – these may uncover additional state
variables.

6. Identify commands needed to control the state variables,
and define their representation.

7. Define command models for the identified commands –
these may uncover additional state variables.

8. Repeat steps 2-7 on all newly discovered state variables,
until all relevant variables and effects are accounted for.

9. Return to step 1, this time to identify additional
objectives, and proceed with additional iterations of the
process until the scope of the mission has been covered.

This modeling process can be used as part of a broader
iterative incremental system and software development
process, in which cycles of the modeling process can be
interwoven with concurrent cycles of software
implementation.

JPL’s state analysis approach is novel and unique in three
ways:

 5

• It is based on a state-based control architecture (see
Figure 3) and leverages a core set of underlying
architectural principles [5].

• When coupled with a state-based software architecture

[5], State Analysis provides a common vocabulary for
systems and software engineers to communicate, and a
common set of architectural elements such that the gap
between the requirements provided by the systems
engineer and the software developed by software engineer
can be minimized. More specifically, it defines direct
mappings from the system requirements (expressed in the
form of behavioral models) to software specifications,
and from these software specifications to implemented
software artifacts.

 Figure 3 State-Based Control Architecture

• It considers the full breadth of system state variables (e.g.,
dynamics, environmental states, device status and health,
parameters, resources, etc...) and allows for
documentation of models using whatever representation is
most appropriate (differential equations, state charts,
tables, pseudo-code, textual descriptions, etc...).

State analysis produces and compiles information that is
traditionally documented in a variety of systems engineering
artifacts, including Hardware Functional Requirements,
Failure Modes & Effects Analyses, Command Dictionaries,
Telemetry Dictionaries and Hardware-Software Interface
Control Documents. Rather than separate this information
up into disparate artifacts, state analysis captures the same
information in a State Analysis Database tool [6] that has
been structured to prompt the state analysis process.

The tool design promotes state discovery, and ensures that
the models and other requirement artifacts are consistent
with the state analysis methodology and state-based
architecture. Furthermore, the database schema has been
developed to map directly into requirements on adaptations
of a state-based control system software framework [5]. In
these ways, the database ensures a rigorous project
development, from requirements analysis, through software
design and implementation, to verification and validation.

4.0 SYNTHESIS OF FUNCTIONAL AND STATE
ANALYSES

An important concept in MBSE is that the linkages between
and within the functional, physical and requirement
hierarchies are explicitly defined and machine auditable.
Not only does this allow for an assessment of the
completeness and integrity of the model but it allows
engineers to assess the impact of changes to the system.
With the introduction of state analysis, it is important to
synthesize it with functional analysis. As mentioned above,
the scope of this effort was limited to integration of the
state-based behavioral modeling aspect of state analysis.
Integration of the goal-directed operations engineering and
state-based software engineering aspects of state analysis
are left for future work.

State and functional analysis synthesis was achieved by
integrating the State Analysis Database tool schema into a
general purpose, computer-aided, model-based systems
engineering tool, resulting in a unified model-based systems
engineering environment. As previously noted, the MBED
pilot project used CORE from Vitech. However the State
Analysis Database schema is portable and can be
straightforwardly implemented in any systems engineering
tool that allows for schema modification.

The synthesis was broken down into 3 subtasks: (1)
integration of the state analysis and functional analysis
schemas, (2) infusion of the integrated schema into the
CORE tool, and (3) demonstration of the integrated
approach through modeling of an example system (in this
case, the JUNO power subsystem). Subtasks (1) and (2) are
described below in greater detail; the results of subtask (3)
are described in Section 8.2.1 of this paper.

4.1 SCHEMA INTEGRATION
The first sub-task was to integrate the state analysis schema
into the functional analysis schema embodied in CORE.
This consisted of defining the appropriate set of
relationships between elements of the state analysis schema
(confining our scope to the state behavior modeling aspect
of state analysis) and elements of the functional analysis
schema described in Section 2.0, above.

Figure 4(a) shows the relevant elements of the functional
analysis schema, along with the relationships between these
elements. As shown in Figure 4(b), this schema was
augmented with the following state analysis elements: state
variables, commands and measurements (goals are also
shown in the diagram, but, as discussed above, the goal-
based operations engineering aspect of state analysis was
outside the scope of this task). As shown in the figure,
relationships were defined between the functional and state
analysis elements, (for example, functions act on state
variables by producing commands that affect them, based
on data provided to them through measurements).

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

 6

Component

FunctionRequirement

Speci
fie

s Perform
s

Specifies

Component

FunctionRequirement Goal

MeasurementState
Variable

Command Input to

C
on

st
ra

in
s A

ff
ec

ts

A
ff

ec
ts

Provides evidence about

Expresses Enables

Pr
od

uc
es

Provides
data toActs on

Has
O

utputs

Constrains

(a)

(b)

Component

FunctionRequirement

Speci
fie

s Perform
s

Specifies

Component

FunctionRequirement

Speci
fie

s Perform
s

Specifies

Component

FunctionRequirement Goal

MeasurementState
Variable

Command Input to

C
on

st
ra

in
s A

ff
ec

ts

A
ff

ec
ts

Provides evidence about

Expresses Enables

Pr
od

uc
es

Provides
data toActs on

Has
O

utputs

Constrains

Component

FunctionRequirement Goal

MeasurementState
Variable

Command Input to

C
on

st
ra

in
s A

ff
ec

ts

A
ff

ec
ts

Provides evidence about

Expresses Enables

Pr
od

uc
es

Provides
data toActs on

Has
O

utputs

Constrains

(a)

(b)

Figure 4. (a) Functional analysis elements and relationships
(b) the elements and relationships of state analysis

synthesized with functional analysis

4.2 INFUSION INTO THE CORE TOOL

Given the proposed integration of the two schemas defined
in the previous section, the next subtask was to infuse this
integrated schema into the selected model-based systems
engineering tool CORE. This involved editing the CORE
database schema to add the state analysis elements
described above as new classes.

For each new class, appropriate attributes were defined, (for
example, the state variable class defines fields for
description, value representation, and behavior models).
Finally, the relationships shown in Figure 4(b) were

implemented as relationships in the schema (for example,
each state variable can have pointers to other state variables,
and to any requirements that constrain it).

The resulting integrated schema enables systems engineers
to straightforwardly navigate between the artifacts resulting
from their functional and state analyses. Furthermore, it
provides a mechanism for automatically auditing their
models for satisfaction of certain completeness criteria, (for
example, each state variable affects or is affected by at least
one other state variable; each component has at least one
state variable; each measurement provides data to at least
one function; etc).

5.0 MISSION PLANNING
The mission planning component of the MBED process
develops the Concept of Operations and the mission
scenarios that are used to drive the models of the spacecraft
subsystems in the spacecraft performance verification
component. Mission scenarios are descriptions of “what
happens in space” to accomplish the objectives of the
mission and are often described using timelines and time-
ordered listings of events.

The mission planner is a system engineer with a focus on
developing the understanding of how the mission events
will proceed from launch until the end of the mission. The
mission planner develops descriptions of how the payload
will be used to accomplish the scientific objectives; how the
project systems support and constrain the science
observations; how the mission design (including launch
strategy and orbit) defines the timing and geometry for the
observations; and how the operational strategy (including
experience from past missions) is applied to develop the
order and specifications of the mission events. For flight
projects, this overall description of the mission is
documented in the Mission Plan. The overall description is
built up from scenarios that describe specific periods of the
mission (for example, launch, commissioning of the
spacecraft, maneuvers, routine and specialized science
observation periods, data playbacks, etc.).

For MBED, the mission planning process begins by reading
the mission’s Phase-A concept study report. This document
provides a fairly detailed mission design, operational plans,
science and mission objectives, technical implementation,
and project schedule. Next, the mission principal
investigator is interviewed to further understand more
specifics about the instrument operation and science
strategy. Questions are then directed to the spacecraft
manufacturer (in-house or contractor) to better understand
the subsystem capabilities and constraints (for example, turn
rates, antenna patterns, etc.). This part of the process
includes participation by engineers building the subsystem
models. A trajectory simulation is then built using the
SOAP tool (Satellite Orbit Analysis Program, created by
Aerospace Corporation) [7]. to understand the timing of

 7

geometric events, including tracking station contacts, and
the spacecraft geometry relative to pertinent celestial bodies
(Sun, Earth, target planet/asteroid/comet), including
pointing of its solar arrays and communications antennas.
Instrument pointing constraints are also investigated in the
SOAP simulation to determine times during the mission
when potential hazards/obstructions may occur.

With this understanding of the science objectives,
instrument operations and constraints, spacecraft subsystem
characteristics, and the trajectory geometry, mission
scenarios are identified to demonstrate typical and stressing
cases for operating the payload and spacecraft during the
course of the mission. When these scenarios have been
detailed with all of the relevant subsystem activities, they
are converted to activity plans that can be utilized by the
subsystem modeling tool(s) in a simulation run (the format
of these activity plans is negotiated between the mission
planner and the engineers building the subsystem models).
The results of the simulation run are compared with the
requirements that are built into the system engineering
model to verify compliance.

In addition to verification of the existing requirements,
simulation runs of these scenarios may also bring new
requirements to light. Requirement discovery from
examining scenarios is a standard part of the iterative
process of mission design and requirements development.

6.0 S/C PERFORMANCE SIMULATION
In a deep space mission’s Preliminary Design Review, the
project team seeks to demonstrate to a review board that
they understand the mission objectives and that they are
capable of achieving them. One aspect of this is showing
that the conceptual S/C design satisfies the mission’s
requirements. The document-based approach for doing this
is to create design documents and have the review board
evaluate them. The model-based approach is to simulate the
mission and check the numerical results against the
technical requirements.

The model-based performance requirements verification
process requires two pieces of software: an integrated suite
of S/C performance and resource simulation models and a
requirements checker that compares the time-ordered results
to the mission’s technical requirements. The process is then
straightforward:

1. Configure with design data from the systems

engineering model and run the integrated simulation
models with every available mission plan.

2. Compare the mission’s technical requirements to all

simulation results and report any violations.

While these principles apply to virtually any spacecraft
performance and resource simulation models, the MBED

pilot used JPL’s Integrated Spacecraft Analysis (ISCA)
suite. Data transfer between the computer-aided model-
based systems engineering tool, CORE, the mission
planning process and simulations was coordinated using
JPL’s Inter-application Communication Executive for
Computational Analysis Tools (ICECAT) described in
Section 6.2.

6.1 INTEGRATED SPACECRAFT ANALYSIS
The simulation models used on this task were the multi-
mission models (MM Models) [8], integrated for an
Integrated Spacecraft Analysis (ISCA).

ISCA is designing, developing and/or acquiring dynamic,
multi-mission, multi-use, multi-scale (variable fidelity)
simulation models and an integrating framework that can be
used cross-mission and throughout the mission lifecycle to
predict spacecraft performance and resources. The goal is to
provide ready-to-use, dynamic S/C performance and
resource prediction capabilities in a single integrated
package.

The simulation models consist of finite state models,
physics equations, algorithms and/or heuristics needed to
make acceptable performance and resource predicts.
Capabilities will include the ability to predict and plot
spacecraft performance and resources in the following
areas:

• Power
• Thermal
• Propulsion
• Attitude Control System (ACS)
• Command and Data Handling (C&DH)
• Telecommunications (flight & ground)
• Orbital mechanics & S/C trajectory (SPICE)

Structural and environmental models are integrated as well
but they do not provide S/C predicts. These capabilities are
integrated using a Multi-Mission Simulation Framework
(MMSF). Figure 5 shows a conceptual design of MMSF.

MMSF consists of four main modules: a Simulation
Manager, a Data Manager, Model Interface and a Multi-
Mission (MM) Model Interface. Internally the Simulation
Manager coordinates simulation time and events for all
models. The Data Manager handles data sharing between
models as well as error and results reporting. This provides
a tight model coupling so that when state changes occur in
one model, such as solar array power, it immediately affects
other models.

 8

Figure 5 ISCA Multi-Mission Simulation Framework

Access to these services is provided by the Application
Programming Interface (API) and Model interfaces. The
MMSF API (whose calls are incorporated in the Simulation
and Data Managers) provides the necessary functions for 3rd
party software (driver module) to run an ISCA. It allows
driver modules to control the execution of the various
Simulation Engine phases (configure, initialize, advance,
finalize) and permits access to the Data Manager for
retrieving/modifying data from any model during a session.

Simulation models are integrated into ISCA through the
MMSF Model and Multi-Mission Model Interface. These
interfaces allow developers to easily plug “wrapped”

 simulation model components into the framework and get
them to operate with other components. Simulation model
components can be from any source and be of any type,
through they typically correspond to some aspect of a
physical S/C assembly such as a data bus throughput model.
The baseline set of MDAS Multi-Mission models use the
optimized MM Model Interface while others use the more
generic Model Interface.

ISCA results are not scripted. Instead the simulation models
will change state in response to inputs from the user. The
framework coordinates model responses so that they can
have an immediate effect on other models integrated into
the
simulation. To perform an analysis using ISCA the user
must provide two types of information: the system
configuration and the mission timeline. This information
can be stored in files and read into the system before the
simulation is executed or provided through the API as the
simulation is executing.

Configuration files are stamped with a particular mission
time and contain parameters for each spacecraft in a system
such as: design, environment and states, including software
states, switch states, temperature, battery state of charge,
attitude, location, ambient temperatures, atmospheric
conditions, as well as any telecom relay spacecraft, and
ground stations. There are two types of configuration files,
the Baseline Configuration file and Situational
Configuration file.

Figure 6 ISCA Input and Output Files

Wrapper I/F
SPICE Mgr Model 1

Wrapper I/F

Model 2

Wrapper I/F

Model n

...

Simulation Mgr

Data Mgr

M
odel Interface

XML Mgr

M
M

 M
odel Interface

A
pplication Program

m
ing

Interface

 9

Figure 7 ISCA Input and Output Files used in Simulation

The Baseline Configuration file represents the configuration
of each spacecraft at the beginning of the mission. There is
typically a single baseline configuration file for each
mission. Its purpose is to provide a basis for all
configurations used throughout the mission. As such,
spacecraft design parameters are important, whereas state
and environmental parameters are not since they are
expected to be contained in Situational Configuration files.

The Situational Configuration files act as an overlay to the
Baseline Configuration file and are used to contain system
state and environmental parameters for a particular point in
time. Design parameters are only put in this file if a
hardware fault has occurred.

Timeline files (also known as Mission Scenarios or Activity
Plans) or are time-ordered lists of commands or parameter
value changes. When the simulations are run, these values
are sent to the simulation models at the specified time.

6.2 INTER-APPLICATION COMMUNICATION

One of the many challenges in MBED FY06 was the
integration of the Mission Planning, System Engineering,
and S/C Performance Analysis processes. On many flight
projects there are standalone tools running on various
platforms and producing data that cannot simply be input
into other tools. One of the model-based engineering goals
is to allow seamless transfer of data between a
heterogeneous set of distributed tools. In MBED FY06 this
was achieved by adapting a COTS framework called
Eclipse to create an Inter-application Communication
Executive for Computational Analysis Tools (ICECAT)
application.

Eclipse is an open source community whose projects are
focused on providing a vendor-neutral open development

platform and application frameworks for building software
[9]. The Eclipse Foundation is a not-for-profit corporation
formed to advance the creation, evolution, promotion, and
support of the Eclipse Platform and to cultivate both an
open source community and an ecosystem of
complementary products, capabilities, and services.

Eclipse has formed an independent open eco-system around
royalty-free technology and a universal platform for tools
integration. Eclipse-based tools give developers freedom of
choice in a multi-language, multi-platform, multi-vendor
environment. Eclipse provides a plug-in based framework
that makes it easier to create, integrate and utilize software
tools, saving time and money. By collaborating and
exploiting core integration technology, tool producers can
leverage platform reuse and concentrate on core
competencies to create new development technology. The
Eclipse Platform is written in the Java language and comes
with extensive plug-in construction toolkits and examples. It
has already been deployed on a range of development
workstations including Linux, HP-UX, AIX, Solaris, QNX,
Mac OS X and Windows based systems.

Since each tool has its own input/output data requirements
and since the tools used within each domain vary, with new
tools being developed or purchased, an interface plug-in
module was created for each application used in MBED.
ICECAT acts as the executive of the system. It is
responsible for retrieving input data such as the
requirements and S/C design, mission planning products
(activity plans), executing integrated tools sets such as the
ISCA simulation models and requirements verification
software, and managing the storage for any end products
generated (performance analysis results, logs, etc.). In
addition, the framework is the user’s interface into the entire
system. It is responsible for processing user requests to
access data, run specific tools, and store various results. It

 S/C (Baseline) Configuration
defines invariant

 S/C Design Parameters (t0)

 Situational Configuration
defines S/C State at some

future time (t1)

 Mission Timeline changes S/C
State over the simulated time

period (t1 – t2)

t0 t1 t2

 Simulation produces results
over the simulated time period

(t1 – t2)

 10

can also display data and assist users during a session
through a set of wizards.

The core framework software module communicates with
the distributed set of tools by issuing command to a set of
interface modules, which in turn access the necessary tools
(see Figure 8). Each of these modules is dedicated to a
specific tool that needs to exchange data. Each module
contains 2 basic components – data processing and
communication protocol. The data processing component is
responsible for:

• Accepting ICECAT Core Software data as input
• Mapping this data into the appropriate input data

for the dedicated tool.
• Formatting the data before sending it to a specific

tool
• Parsing this result data and
• Mapping and formatting the result data into

ICECAT Core Software data.

Figure 8 Interface Plug-In Architecture

The communication component is responsible for:

• Invoking the tool and passing the formatted data
• Accepting tool result data

The set of tools that will be part of the system may change
as new software is purchased and/or developed. ICECAT’s
plug-in architecture design allows these new tools to be
added without impacting the existing set of tools. When a
new tool is to be added, an interface plug-in module must be
created for that tool. Since the knowledge of the new tool
and its data requirements are captured in the plug-in, the
core data transfer software and the existing plug-ins are not
affected.

This approach to adding new tools allows for the
functionality to be extended while reusing all of the existing
software elements.

7.0 NUSTAR PILOT

MBED FY06 applied integrated, model-based system
engineering, mission planning and performance

requirements verification techniques to the NuSTAR
project. Since this was a research task these capabilities
were demonstrated by “shadowing” the flight project.
Shadowing in this context means running the task as a flight
project but not providing any deliverables to the flight
project.

Unfortunately the NuSTAR project was canceled two-thirds
of the way through its formulation phase. Nevertheless
many of the goals of the pilot were achieved as will be
described in the following sections.

7.1 NUSTAR MISSION DESCRIPTION
The NuSTAR Mission is a Small Explorers (SMEX)
mission for observing and imaging X-ray sources in space.
This mission uses a technology that is new to space
applications: a focusing hard X-ray telescope operating in
the energy range from 6 to 80 keV. The design of this
telescope eliminates high detector backgrounds and allows
for true imaging of these hard X-ray sources.

While the mission was selected for a Phase A study in 2003
and further study in 2005, it was ultimately cancelled by
NASA in 2006 due to agency budget limitations. Before
cancellation, the project was targeting a November 2007
launch.

The primary objectives of this mission are:

• To conduct a census of black holes on all scales by
performing deep wide-field surveys of the
extragalactic field and the Galactic center.

• To map radioactive material in young supernovae
remnants, to study the birth of the elements and to
understand how stars explode.

• To detect relativistic jets of particles from
extremely active galaxies, to understand what
powers giant cosmic accelerators

To achieve the sensitivities required for these objectives,
there is an array of three co-aligned hard X-ray telescopes,
requiring a 10-m focal length. This focal length is provided
by a 10-m mast that is deployable on-orbit.

The proposed NuSTAR spacecraft was to be built by
General Dynamics/Spectrum Astro. It would have provided
3-axis pointing control of the instruments using reaction
wheels and a star tracker. Energy would have been
provided by two solar arrays with a single gimbal axis to
allow pointing to the sun in any attitude and a battery to
provide energy during the solar eclipse on each orbit. The
telecommunications design would have provided
communications at S-band using two hemispheric patch
antennas, with the capability to return science data to a 10-
meter ground antenna at a rate of 4.12 Mbps. The standard
science collection rate from the X-ray telescope would have
been 15 kbps, with the spacecraft providing data storage of

 11

16 Gbits.

The NuSTAR spacecraft was to be launched into a 525-km
circular, near-equatorial orbit, with an inclination of just 1º,
minimizes radiation effects on the instrument data. Upon
arrival in this orbit, the observatory would have deployed its
solar arrays, acquire signal from the primary ground station,
and performed a checkout of all systems. At fifteen days
after launch, the observatory was to deploy the instrument
mast. It would then have performed an alignment to verify
that the optics are focused on the detectors and calibration
procedures to confirm operation of the instrument as a
whole. After confirming the operation of the telescope, the
observatory would have begun its science operations.

In its science operations phase, the observatory will perform
surveys and pointed observations. To perform a survey, the
observatory will sweep the telescope’s boresight across a
pre-defined portion of the sky, gathering data from any X-
ray sources residing in that area. For pointed observations,
the observatory would point the telescope directly at a
specific target, collecting enough data to produce a high-
resolution X-ray image of the target.

NuSTAR requires a daily downlink to return the science
data collected from its current target. The primary ground
station for support of this mission is Malindi (Kenya), with
a backup station of Kourou (French Guiana). With the near-
equatorial orbit, NuSTAR has visibility of both stations on
every orbit. Because of the rotation of the Earth, the
spacecraft’s antenna configuration, and its current
orientation, some orbits have greater potential for telecom
passes than others.

7.2 NUSTAR REQUIREMENTS AND DESIGN
NuSTAR functional behavior, physical architecture and
Level 2 requirements were captured in CORE Workstation
5.1 following the procedure outlined in Section 2.0. CORE
was selected because of its ability to document the critical
systems engineering elements (e.g., requirements, functions,
components, interfaces, risks, issues) and could be adapted
to specific elements required by the team.

The following functions, physical components, and
requirements were entered into CORE:

• 182 NuSTAR functions: The basic function was

“Gathering Science Data” and that was decomposed to
functions that would satisfy the NuSTAR requirements
and can be allocated to a specific component.

• 330 NuSTAR physical components: These physical
components included common spacecraft items like:
solar array panel, camera, CPU, or battery. Design
information was entered into the property sheet for
each component entered. Each component type had a
unique template that described design parameters

typically associated with that type of component.
Templates were created using the CORE Schema
Extender.

• 194 NuSTAR requirements: Since the NuSTAR
requirements were already available in Word
documents, the MBED team used the CORE
Requirement Extractor tool to copy them into the
CORE database.

Requirement verification tools need easy access to the
numerical information within the requirements. The
Schema Extender tool was used to modify the basic CORE
requirement template to include these fields. Since most
measurable requirements are in the form:

 Measurement <>= Value in Units for some Duration

Fields were added for these numerical values. Like the
intrinsic functions and physical architecture, the
requirements were linked together in CORE in a
hierarchical manner. CORE scripts were then used to audit
the overall model for completeness and integrity.

Three gate products were created by the MBED NuSTAR
pilot from the CORE system engineering model:

• NuSTAR Level 2 Requirements Document
• NuSTAR Significant Risk List
• NuSTAR Mission Scenarios

The NuStar Level 2 Requirements document and the NuStar
Mission Scenarios document were created using report
scripts which were obtained from Vitech Corporation. The
report scripts were run from within CORE, but before they
could be used, the schema was modified in the CORE
database to support the reports.

Most of the system engineering data for NuStar was already
resident within the CORE database, but additional report-
specific data was entered into the database as well as links
to graphics. Each section of the report was then configured
by linking the correct report script with the appropriate data
within the CORE database. Some of the report scripts
generated CORE graphics. To include these in the report the
graphics required some size adjustments so they could be
optimally viewed.

The risk report was created by a different mechanism since
the Vitech report scripts did not support some of the field
types. The CORE database was dumped into an eXtensible
Markup Language (XML) file. A custom XML parser was
then written (in perl), which extracted out the risk elements
from the XML file, and then stored in a new XML file. The
new XML file was also reformatted into a simpler XML
format to aid in the report processing. A tool called
JasperReport running under the Eclipse environment was
then used to layout and create the report using the new

 12

XML file as an input.

7.3 NUSTAR MISSION PLANNING
The baseline plan for the mission is to observe a series of
targets that have been organized into a schedule.
Depending on whether the target is to be surveyed or
observed, the observatory will sweep the telescope across or
stare at the target. Pointed observations have durations that
range from a week to a month, but survey can take 1-2.5
months to complete.

Scheduling of activities for a scenario is based on the
expected behavior of the spacecraft and its instrument(s).
The behavior of the spacecraft is defined by the orbit in
which it resides and the attitude control system it uses. For
determining geometric events (eclipses, occultation,
visibility), the orbit must be understood. SOAP is a very
powerful tool in gaining an understanding of an orbit; it
quickly presents a visual representation of an orbit based on
the elements the user enters, and provides an analysis
environment that can quickly determine the geometric
events. Figure 9 shows a representation of the initial
NuSTAR orbit.

Figure 9 NuSTAR Initial Orbit – Polar View

Also shown in this figure are a representation of the
spacecraft antennas’ fields of view (FOV) and the
telescopes FOV. To represent the FOVs of the observatory
components, an understanding of the attitude control
concept is required. In the case of NuSTAR, the spacecraft
maintains a viewing orientation with the telescope boresight
pointed at the science target and the solar array gimbal axis
pointed normal to the Sun line; the solar arrays have a one-
axis gimbal and can maintain full-Sun on the arrays in this
orientation.

One of the main concerns for any mission is the capability
to communicate with the ground. Using the analyses
available in SOAP and the expected performance of the

spacecraft antennas and ground stations, occurrences of
potential telecom contact can be determined. To determine
the occurrences of telecom contact, the antennas for the
spacecraft and the ground station are modeled in SOAP.
For the ground station, the antenna configuration is simple:
a nadir-facing sensor with a half-cone angle of 85˚. This
configuration represents the antenna’s capability to track the
spacecraft as it passes the station, assuming a 5˚ elevation
mask. The spacecraft has 2 antennas facing in opposite
directions. The antennas are omni-directional with
boresights pointed in directions normal to the telescope
boresight and the solar array gimbal axis; this configuration
means that the antennas are pointed roughly toward and
away from the Sun. Because of antenna performance
characteristics and obstruction by some parts of the
spacecraft, each antenna falls short of covering a full
hemisphere; the half-cone angle for each spacecraft antenna
is 85˚, leaving a small gap in coverage around the plane
normal to the antennas’ boresights. This gap can be seen in
Figure 9, where the telescope is pointed toward the upper
right of the figure and the Sun is directly right. The
spacecraft switches between these antennas as required by
the contact schedule. SOAP analyses provided listings of
all potential telecom contacts during the operational periods
of these scenarios. In most cases, a single ground station
pass consisted of two contacts (one for each antenna on the
spacecraft) with a short gap between them; there are 2
passes each day that are single-contact passes, one sunlit
and one during eclipse.

A set of five scenarios were constructed to test a variety of
mission requirements. Each scenario represents either a
typical case or a case that stresses some aspect of
performance. The first two scenarios present typical
performance of the observatory at the beginning of the
mission. The difference between these scenarios is the
treatment of ground station contacts; the first uses single-
contact passes that occur during eclipse periods (stressing
power usage), and the second uses an expected data
delivery time for scheduling the contact passes without the
restriction to single-contact passes. These two scenarios
could be used as the beginning of a trade study on downlink
operations. The third scenario also presents typical
operations, but uses a different science target and occurs in
the later part of the mission; the observatory does not have
orbit maintenance capability and its orbit decays over time,
resulting in a shorter orbit period and shorter contact pass
durations (stressing data return requirements). The fourth
scenario presents another case of typical operation in the
earlier part of the mission, but it uses a different science
target, a different delivery time, and restricts passes to sunlit
single-contact passes; this case would provide more data for
use in the trade study. The final scenario demonstrates the
execution of a worst-case target change associated with
acquiring a target of opportunity; the spacecraft reorients by
performing 3 single-axis rotations to maintain Sun-pointing
with the solar arrays and to make use of the most stable
configuration for most of the retargeting procedure. This

 13

group of scenarios addresses most of the operational modes
and procedures that would be utilized over the life of the
mission.

This set of scenarios was constructed into a set of activity
plans for use in the performance simulations. The format
was negotiated between the mission planner and the
simulation software developers.

7.4 NUSTAR SIMULATION RESULTS
The integrated multi-mission (MM) models were simulated
each of the five scenarios NuSTAR design parameters. The
results of the MM models were then compared to mission
and system requirements to see if the design could meet
them. Figures 10, 11 and 12 graphically depict some of the
ISCA model predictions versus requirements for a portion
of one of the typical scenarios described in section 7.3.

Figure 10 – Bus Voltage vs. Time

Figure 10 shows a graph of the predicted bus voltage as a

Figure 11 – Battery State of Charge vs. Time
function of time. The horizontal red lines indicate the
required minimum and required maximum allowable bus

voltages. The timeline below the plot indicate the periods of
time when the NuSTAR spacecraft was alternately in the
sun and eclipsed by the Earth.

Figure 11 shows a graph of the predicted battery state of
charge (SOC) as a function of time. The horizontal red line
indicates the minimum state of charge percentage that is
allowed by the mission and system requirements. The
timeline is the same as in Figure 10.

Figure 12 – Maximum Data Rate vs. Time

Figure 12 depicts a graph of the predicted maximum
telecommunications data rate as a function of time. The
horizontal red line indicates the required minimum data rate
for when the NuSTAR spacecraft is downlinking data to the
Earth, whether it is the ground station at Malindi or Kourou.
The timeline indicates when the scenario commanded the
ISCA telecommunications model to perform the link
analysis. The “Xmtr On” command from the scenario
instructs the models to begin the link analysis, the “Xmtr
Off” command instructs the models to end it.

8.0 JUNO PILOT
MBED FY06 applied integrated, model-based system
engineering, mission planning and performance
requirements verification techniques to the Juno project.
Since this was a research task these capabilities were
demonstrated by “shadowing” the flight project. Shadowing
in this context means running the task as a flight project but
not providing any deliverables to the flight project.

While still early in the design process, a principal design
risk was identified that the power margins may not be
adequate in specific mission scenarios given solar cell
degradation from the high radiation environment at Jupiter.
Therefore, the MBED team applied the principles of model-
based engineering design to review the mission
requirements, develop a detailed mission scenario, and
analyze the power budget using specialized design tools.

 14

8.1 JUNO MISSION DESCRIPTION
In 2005, NASA selected the Juno mission to conduct an in-
depth study of Jupiter, the most massive planet in the solar
system. Juno will peer through the clouds of Jupiter’s
atmosphere to reveal the fundamental processes of the
formation and early evolution of the gas giant planet,
allowing a better understanding of the solar system.

The Juno science investigation will focus on four themes:

• Origin: Juno will measure global oxygen and nitrogen
by mapping the gravitational field and using microwave
observations of water and ammonia.

• Interior: Using maps of Jupiter’s gravitational and
magnetic fields, Juno will reveal the interior structure.

• Atmosphere: By mapping variations in composition,
temperature, opacity and dynamics, Juno will determine
the structure and dynamics of the atmosphere.

• Magnetosphere: Juno will measure the distribution of
Jupiter’s aurora’s charged particles, their associated
fields, and the concurrent UV emissions of the planet’s
polar magnetosphere.

To accomplish these objectives, Juno will carry a scientific
payload that includes seven instruments: (1) dual frequency
gravity/radio science system, (2) six wavelength microwave
radiometer for atmospheric sounding and composition, (3)
dual-technique magnetometer, (4) plasma and energetic
particle detector, (5) radio/plasma wave experiment, (6)
ultraviolet imager/spectrometer, auroral distributions
experiment, and (7) a color camera.

The mission will be launched in 2011 on an Atlas V launch
vehicle, and it will arrive in 2016 via an Earth gravity assist.
 The science orbit will consist of 30 “11 day” science orbits
at a 90-deg inclination to reduce radiation exposure. This
orbit will sample a full range of latitudes and longitudes,
combining in situ and remote sensing observations.

The Juno spacecraft is spin-stabilized and solar powered,
incorporating dual-redundancy to reduce risk. It has three
conventional solar array wings, a dual-mode propulsion
system, and a mechanically-quiet environment to minimize
science disturbances. Overall, the spacecraft design
maintains exceedingly high margins with solar power being
an exception in specific scenarios, where radiation may
degrade the capability of the solar cells.

Figure 13 Juno in its expected JOI orbit around Jupiter

 15

8.2 JUNO REQUIREMENTS AND DESIGN
The focus of the Juno effort was on power analysis,
particularly during Jupiter Orbit Insertion (JOI). It turns out
that JOI was the peak power usage for the entire mission.
Short power peaks during the trim maneuvers for each
science orbit were also identified.

Requirements, components and functions were entered into
the CORE database for analysis. The data was obtained
from the Juno Level 2 Requirements document, the Juno
Concept Study Report, the Juno Power Worksheet and from
discussions with the Juno Engineers. The schema used for
the power-related components was directly inherited from
schema used previously for NuStar – it was just a matter of
entering the Juno data for the batteries and solar arrays. The
solar arrays schema was broken into considerable detail
including subcomponents for segments, panels, strings and
cells. Over 170 components were defined along with over
400 related power modes.

Over 260 requirements were entered into the database, with
about 50% of them being power-related. The power margin

requirements for Juno were mostly derived. Power margins
were broken down by subsystem and mission phase. The
total power margin consisted of the Current Best Estimate
(CBE) + Contingency + a fixed 13% margin. The
Contingency varied by mission phase, and ranged from 11%
to 30%, averaging about 20%. Power margins were derived
for JOI and the Gravity Science orbit. The derived power
margins were then used in the simulation runs. After the
requirements, components and function were all linked
together in the CORE database, audits were performed to
verity the linkages.

8.2.1 JUNO STATE ANALYSIS

In order to validate the integrated Functional and State
Analysis schema described in Section 4.0, and to
demonstrate the complementary nature of these two model-
based systems engineering methodologies, a limited state
discovery and modeling process was applied to the Juno
power subsystem described in Section 8.1. The resulting
State Analysis artifacts were captured in the augmented
CORE tool. Figure 14 is an example State Effects Diagram
showing the key state variables, commands and

Shadowing

Sun Angle W.R.T.
Panel Normal

Position of the
Sun W.R.T. S/C

body frame

Array
Frame

wrt Sun

Mechanical
Config

Ephemer
is multi

state

SC position
and attitude

W.R.T. Jupiter

Solar
Array

Current

Solar
Array

Voltage

SA Voltage
Degradation

Insulation
Solar Array

Temperature

Solar
Array Pwr

Load
Current i

Load
State i

Load
Pwr i

Bus
Voltage

Shunt
Current

Batt SOC

Batt
Voltage

Batt
Current

Batt Temp

Batt
Internal

Resistance

Batt
Capacity

Dissipation

Battery
Power Bus
Structural
Power Load
Solar Array
Celestial Mechanics

Radiation

Solar
Array
Health

Batt
Energy

Self-
discharge

Current

Voltage
measurements

Draw Current
Command

SOC
measurements

Figure 14 Sample State Effects Diagram

 16

Figure 15 State Variables and associated models are captured in CORE

measurements that were identified for the subsystem, and
the causal effects among them.

Populating the integrated database was relatively simple.
The first step was to enter each state variable, command,
and measurement element under their respective Classes in
CORE. This was no different than for any other CORE
element. Once the elements were instantiated in CORE, they
could be further populated with their attribute information,
e.g., state variables must specify how their values are to be
represented (for instance, discrete states like Device
Operational Modes may use enumerated sets of values
{OFF, ON, INITIALIZING, etc.}, while continuous states
like Device Power Consumption may be represented as
floating point numbers in units of Watts). The final step was
to “link” the various elements with each other, by
instantiating the relevant relationships from those shown in
Figure 4(b). Figure 15 shows a screen capture from the
CORE tool, showing the list of 28 state variables that were
defined for this subsystem, and showing the behavior
modeling details associated with one of these state
variables, the battery state of charge.

8.3 JUNO MISSION PLANNING
Because of the focus on the power subsystem and the desire
for rapid turnaround, the initial mission planning activities

focused on identifying the operational scenario that put the
most stress on the power subsystem. From examination of
the power states and baseline operational scenarios provided
by the Juno team, it was determined that the stressing case
was Jupiter Orbit Injection (JOI); during the main-engine
burn for JOI, the spacecraft places the highest demand on
the power subsystem, and the solar arrays are facing away
from the Sun, producing no/minimal power. Juno’s
baseline scenario for JOI was completely developed, but the
mission’s launch date changed since the scenario’s
development. Using this baseline, the mission planner
developed a new scenario for the new epoch of JOI; the
activities are the same as those in the baseline, but the
scheduling of the activities was modified to align with the
new arrival epoch.

Scheduling of activities for a scenario is based on the
expected behavior of the spacecraft and its instrument(s).
The behavior of the spacecraft is defined by the trajectory it
traverses and the attitude control system it uses. For
determining geometric events (eclipses, occultation,
visibility), the trajectory must be understood. SOAP is a
very powerful tool in gaining an understanding of a
trajectory; it quickly presents a visual representation of a
trajectory based on the elements the user enters or an
ephemeris of the trajectory, and provides an analysis
environment that can quickly determine the geometric

 17

events.

The trajectory for Juno for the selected epoch was provided
by the Juno team and was analyzed for the relevant
geometries. The geometries of interest are the line-of sight
between the ground stations and Juno, the potential for
eclipses/occultations, and the solar array attitude relative to
the Sun. Although the telecom subsystem is not being
modeled, the ground station contacts are relevant to the
scheduling of activities, including transitions by the
transmitter between standby and transmit.

For the eclipse/occultation concerns, the trajectory was
designed to not experience these types of events from
Jupiter approach through end of mission (EOM); the SOAP
analysis confirms this condition. For the solar array
attitude, the solar arrays are body-fixed and normal to the
spin axis of the spacecraft; the spin axis of the craft is
pointed at Earth for a majority of the JOI scenario, but when
preparing for and executing the main-engine burn, the
spacecraft precesses from Earth-point to a fixed attitude for
burn execution, an attitude which points the spin axis
approximately normal to the Sunline.

The SOAP analysis produced tabular output of the ground
station contacts and the profile of the solar array attitude.
These data facilitate scheduling and construction of the
activities plan for the JOI scenario.

8.4 JUNO SIMULATION RESULTS
The integrated multi-mission (MM) models simulated the
JOI scenario using Juno design parameters for both current
best estimate (CBE) and CBE plus contingency. The results
of the MM models were then compared to mission and
system requirements to see if the design could meet. Figures
16, 17 and 18 graphically depict some MM model
predictions for the JOI scenario. The predictions are for the
current best estimate design parameters.

Figure 16 – Solar Array Power Generation vs. Time

Figure 16 shows a graph of the predicted solar array output
in watts as a function of time. The most critical portion of
this scenario is when the Juno spacecraft makes its planned
turn for the JOI burn. This turn requires that the spacecraft
solar panels be turned nearly 90 degrees from the sun line.
This results in no solar input on the solar arrays and, hence,
that Juno spacecraft run on battery power only.

Figure 17 – Propulsion Subsystem Power Consumption vs.

Time

Figure 17 depicts a graph of the amount of electrical energy
in watts that the propulsion subsystem consumes as a
function of time during the JOI scenario. This subsystem is
the most power hungry subsystem during the scenario so
Juno project engineers are concerned about the batteries
being able to support the critical maneuver. The horizontal
red line shows the system requirement for maximum power
consumption that the propulsion subsystem should stay
under for the duration of the scenario.

Figure 18 – Battery Power vs. Time

In Figure 18, the battery power supplied as a function time
is depicted. When the Juno spacecraft turns for the JOI burn
it is running entirely on battery power. This graph helps
engineers understand the amount of stored energy that the
batteries must provide in order for the spacecraft to survive
the maneuver. It should be noted that predictions that lie

 18

below the x-axis indicate that the battery is discharging and
predictions above indicate that it is charging.

9.0 CONCLUSIONS
In FY 2006, JPL’s Research and Technology Development
(R&TD) program undertook an effort to develop and pilot
formulation phase model-based engineering design
capabilities by “shadowing” two deep space missions. Since
much of the activity in this phase center on system
engineering, the initiative focused on developing its Model-
Based System Engineering (MBSE) capabilities.

The pilots demonstrated how the traditional document-
based functional analysis can be enhanced through the use
of a computer-aided model-based systems engineering tool.
Model-based tools and techniques such as these improve
system requirements and design by providing automated
audits of the model’s consistency, completeness and
integrity.

In the model-based approach, system engineers focus on
creating descriptive models, rather than writing documents.
The models now become the repository for system
engineering knowledge so that artifacts, such as gate
product documents, can be automatically produced rather
than written. When integrated with a web-based inter-
application communication executive, one can select and
transform system engineering information to enable other
kinds of analyses such as simulation-based risk and
performance assessments.

Shortcomings in functional analysis’ ability to represent
dynamic system behavior were overcome with the
introduction of mission planning, performance simulation
and state analysis. Synthesizing functional and state analysis
highlighted the complementary nature of these two model-
based systems engineering methodologies and promises to
yield significant benefits, including:

• Better understanding and documentation of designed

behavior;
• Earlier identification of unexpected design challenges;
• Improved traceability to developed software; and
• More robust fault protection in the designed system.

Integrating the state analysis schema into a general-purpose
model-based systems engineering tool provides for
traceability between functional models and behavioral
models, and allows for easy navigation between these
different but related domains.

The task also demonstrated the utility and applicability of
time-based performance and resource simulations and
mission planning in providing early verification of system
requirements.

ACKNOWLEDGEMENTS

The work described in this publication was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics
and Space Administration.

References herein to any specific commercial product,
process or service by trade name, trademark, manufacturer,
or otherwise does not constitute or imply its endorsement by
the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

REFERENCES
[1] Robert Shishko, Robert G. Chamberlain, NASA Systems
Engineering Handbook, NASA Publication SP-6105, Jet
Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena,
CA 91109, second printing April 1996.

[2] Department of Defense Systems Management College,
Systems Engineering Fundamentals. Defense Acquisition
University Press, Fort Belvoir, VA., 2001.

[3] Vitech Corportaion Web site:
http://www.vitechcorp.com.

[4] Ingham, M., Rasmussen, R., Bennett, M., and Moncada,
A., “Engineering Complex Embedded Systems with State
Analysis and the Mission Data System”, AIAA Journal of
Aerospace Computing, Information and Communication,
Vol. 2, No. 12, Dec. 2005, pp. 507-536.

[5] Dvorak, D., Rasmussen, R., Reeves, G., Sacks, A.,
“Software Architecture Themes in JPL’s Mission Data
System,” IEEE Aerospace Conference Proceedings, March
2000.

[6] Bennett, M., Rasmussen, R., and Ingham, M., “State
Analysis Requirements Database for Engineering Complex
Embedded Systems”, 15th Annual International INCOSE
Symposium, Rochester, NY, July 2005.

[7] D. Y. Stodden, G. D. Galasso, "Space System
Visualization and Analysis Using the Satellite Orbit
Analysis Program (SOAP)," IEEE Aerospace Applications
Conference Proceedings Vol. 2, Aspen Colorado, 1995.

[8] Kordon, M., and E. Wood, "Multi-Mission Space
Vehicle Subsystem Analysis Tools," IEEE Aerospace
Conference Proceedings, Big Sky, MT., March 2003.

[9] The Eclipse Foundation Web site:
http://www.eclipse.org.

 19

BIOGRAPHY

Mark Kordon is the Technical Group
Supervisor for the Modeling and
Simulation Technologies Group, and
Task Manager for Integrated Spacecraft
Analysis Tools at the Jet Propulsion
Laboratory. His research interests
include modeling and simulation
techniques, evolutionary computing,
multi-agent systems and space systems.
He received his degree in Computer and Systems
Engineering from Rensselaer Polytechnic Institute. Mark
managed the work described in this paper.

Steve Wall is a Principal Engineer at the
Jet Propulsion Laboratory, California
Institute of Technology, where he
manages programs for the Strategic
System Technologies Program Office.
Steve has participated in seven major
space missions in design teams, science
teams, operations teams, and
management. Current research interests
include advanced system design, concurrent engineering,
and other rapid design methods. He holds a Masters in
Optical Engineering from the University of Rochester and a
BS in Physics from North Carolina State University. For his
past work Steve has published over 85 papers in the
scientific and technical literature and in the popular press
and has been awarded the NASA Exceptional Achievement
Medal, the Exceptional Service Medal, and six NASA Group
Achievement Awards.

Dr. Henry Stone Dr. Stone is the
Section Manager of the Systems
Engineering Section at the Jet
Propulsion Laboratory. He began his
career at JPL in 1987 and worked on
a number of robotics technology
programs. In 1992, he became the
Technical Manager of the Mars
Pathfinder Rover's Control and Navigation Subsystem.
Between 1997 and 1999 he was a sub-lead on several Mars
Mission studies including the 2003 Athena Rover and the
2004 Large Lander Study. In June of 2000 he became the
Project Element Manager for the Mars Exploration Rover
Avionics Subsystem. During operations he led MER's
Spacecraft/Rover Engineering Team. Dr. Stone obtained
his BS, MS, and PhD in Electrical and Computer
Engineering from Carnegie-Mellon University in 1981,
1983, and 1986, respectively.

William Blume is the Technical Group
Supervisor for the Mission Engineering
and Planning Group at the Jet
Propulsion Laboratory. The group is
responsible for developing plans,
strategies, and end-to-end mission
timelines for JPL space missions. He
was recently the mission design manager
for the Deep Impact project that
impacted comet 9P/Tempel 1 in 2005. Bill has BS and MS
degrees from Purdue University in aeronautics and
astronautics. He planned the approach for integrating
mission activity plans with the subsystem modeling tools.

Joseph Skipper is a member of the
technical staff in the Exploration
Systems Concepts Group. He is
currently engaged on the Constellation
program on both the Command, Control,
Communication, and Information (C3I)
team, and the Lunar Operations
Simulation Modeling team. He holds a
Ph.D. degree from Texas A & M
University.

Dr. Michel Ingham is a member of the
technical staff in the Flight Software
Systems Engineering and Architecture
Group at the Jet Propulsion Laboratory.
His research interests include model-
based methods for systems and software
engineering, software architectures, and
spacecraft autonomy. He earned his
Sc.D. and S.M. degrees from MIT in Aeronautics and
Astronautics, and a B.Eng. in Honours Mechanical
Engineering from McGill University in Montreal, Canada.
He was responsible for architecting the integration of
Functional and State Analysis.

Joseph Neelon is a member of the
technical staff in the Mission Engineering
and Planning Group at the Jet Propulsion
Laboratory. He received his Bachelor of
Science in Aerospace Engineering from
Penn State University, University Park
and his Master of Science in Astronautics
from the Massachusetts Institute of
Technology. Joseph analyzed the geometries and
assembled the activity plans described in this paper.

 20

Ron Baalke is a member of the technical
staff in the Mission Engineering and
Planning Group at the Jet Propulsion
Laboratory. Ron received his Bachelor
of Science in Computer Science from
California State University, Sacramento
and his Master of Science Degree in
Computer Science from California State
Polytechnic University, Pomona. Ron researched and
entered the spacecraft requirements into the system
engineering tools and generated the gate products
described in this paper.

James Chase is a member of the
technical staff in the Surface Systems
System Engineering Group at the Jet
Propulsion Laboratory. He received his
Master’s Degree in Aeronautics and
Astronautics from in MIT. Jim helped
with the Juno requirements and state
analysis efforts.

David Hanks is a member of the
technical staff in the Modeling and
Simulation Technologies Group at the
Jet Propulsion Laboratory. He received
his Bachelor of Arts in Mathematics and
Bachelor of Science in Physics from the
California State University, Fullerton.
David is the Integrated Spacecraft
Analysis Tools Development Lead. He was responsible for
the simulation results described in this paper.

Jose Salcedo is a member of the
technical staff in the Modeling and
Simulation Technologies Group at the
Jet Propulsion Laboratory. Jose
received a Bachelor’s of Arts in Physics
from Occidental College(’82) and a
Master’s Degree in Computer
Engineering from the University of
Southern California (’84). Jose implemented the binary
comparison expression code described in this paper.

Benjamin Solish is a student at the
University of Washington in Aeronautics
and Astronautics working on his MS
degree. His research interests include
space systems engineering, spin orbit
resonance, and control theory. He
earned his B.S. from MIT in Aeronautics
and Astronautics. He was responsible
for implementing the integration of Functional and State
Analysis.

Mona Postma is a member of the technical
staff in the Modeling and Simulation
Technologies Group at the Jet Propulsion
Laboratory. She received her Bachelor of
Science in Computer Science from
California State Polytechnic University,
Pomona. Mona researched and entered the
spacecraft requirements and designs into the system
engineering tools and performed the requirements
verification.

Richard Machuzak has been a member of the technical
staff in the Mission Engineering and Planning Group for
the past 5 years, and is the Mission Designer on the Space
Interferometry Mission. Rich was responsible for
researching and entering much of the spacecraft data in the
systems engineering tools.

